Reporte 1 - Declaración de herramienta en KUKA - Equipo 1

José Pablo Hernández Alonso

Dirk Anton Topcic Martínez

Luís Alejandro Bulas Tenorio

Universidad Iberoamericana Puebla

Laboratorio de robótica Aplicada 12223B-P25

Profesor: Mtro. José César Ortega Morales

04/02/2025

Índice

- 1. Introducción
- 2. Marco Teórico
- 3. Desarrollo de la Práctica
- 4. Conclusiones
- 5. Referencias

Introducción

El presente reporte tiene como objetivo documentar el proceso de configuración y operación del robot Kuka KR 16R2010-2, con especial enfoque en la declaración y configuración de la herramienta lápiz en el robot manipulador. Se explorará la interfaz de usuario, los tipos de ajuste para el movimiento manual, los ajustes de velocidad, y el menú de configuración de herramientas. Finalmente, se describirá el proceso detalladamente y se evaluará cómo verificar la correcta configuración de la herramienta.

Marco Teórico

El robot Kuka KR 16R2010-2 pertenece a la familia KR CYBERTECH-2 y es un manipulador industrial de 6 ejes diseñado para aplicaciones que requieren precisión y versatilidad. Con un alcance máximo de 2013 mm y una capacidad de carga nominal de 16 kg, este modelo es adecuado para diversas tareas de automatización. Su unidad de control puede ser KR C4 o KR C5, y cuenta con protección IP65, garantizando resistencia en ambientes industriales.

La configuración de herramientas en un robot industrial implica la correcta declaración de su posición y orientación en relación con la brida de montaje. Esto es crucial para que el robot realice movimientos precisos y evite errores en la trayectoria.

Desarrollo de la Práctica

1. Conocer la interfaz de usuario del robot

La interfaz de usuario del robot Kuka se basa en el sistema KUKA SmartPAD, que permite el control y programación del robot de manera intuitiva. A través de este dispositivo, el usuario puede acceder a los distintos modos de operación, configuración de herramientas, y ajustes de movimiento.

2. Tipos de ajuste para el movimiento manual del robot

El movimiento manual del robot se realizó en la práctica mediante las siguientes dos configuraciones:

- **Movimiento por base mundo**: El sistema de coordenadas está fijado en una referencia global y los movimientos se ejecutan en función de dicho sistema.
 - Se utilizan los botones en la tableta del operador y se mueve en el sistema de coordenadas cartesianas basado en la base (X, Y, Z positivos y negativos respectivamente).
- **Movimiento por articulaciones**: Cada eje del robot se mueve de manera independiente, permitiendo ajustes específicos de posición.
 - Se utilizan los botones en la tableta del operador y se mueve por articulaciones (cada una de las articulaciones es controlada y su sentido positivo o negativo están marcados en el robot y se controlan mediante los botones).

Para realizar estos movimientos manuales, es necesario presionar en la tableta de control los botones y sensores especiales de "hombre muerto". Si el operador suelta estos botones o los presiona con demasiada fuerza, el robot entra automáticamente en un estado de paro de seguridad. Esta función es esencial para proteger al operador de posibles golpes o accidentes durante la manipulación manual del robot.

3. Ajustes de velocidad de movimiento manual

El robot permite ajustar la velocidad del movimiento manual para garantizar un control seguro y preciso. Estos ajustes se encuentran en el menú de configuración y pueden modificarse según los requerimientos del operador.

4. Menú de configuración de la herramienta (Configuración TCP XYZ 4 Puntos)

Para definir la herramienta correctamente, se usa el método **TCP XYZ 4 Puntos**, donde se establecen cuatro posiciones distintas de la herramienta en el espacio para calcular con precisión su punto central y orientación. Este proceso es esencial para garantizar la exactitud en las tareas del robot.

5. Descripción del proceso

El procedimiento para la declaración de la herramienta lápiz en el robot Kuka KR 16R2010-2 es el siguiente:

- 1. Acceder a la interfaz KUKA SmartPAD: Encender el sistema del robot y asegurarse de que el SmartPAD esté operativo.
- Entrar en modo experto: Para poder realizar cambios en la configuración del robot, es necesario acceder al modo experto. Para ello, se debe ingresar la contraseña "kuka" en la sección correspondiente.
 - Ingresar a configuración y grupos de usuario.
 - Seleccionar experto.
 - Ingresar contraseña.
- Ingresar al menú de configuración: Dentro del SmartPAD, navegar hasta la opción de configuración y seleccionar la sección de inicio (start-up), después medir, y finalmente herramienta.

- 4. Seleccionar "Declarar nueva herramienta con XYZ 4 ": En esta opción, se podrá registrar una nueva herramienta con los parámetros adecuados.
 - Número de herramienta.

• Nombre de la herramienta.

- 5. Configurar mediante el método TCP XYZ 4 Puntos:
 - Se deben tomar cuatro puntos distintos en el espacio utilizando la herramienta seleccionada.

 Se debe de mover el robot en rotaciones y volver a acomodarlo en un punto de referencia.

- En cada punto, se debe registrar la posición de la herramienta en relación con la brida del robot.
- El sistema calculará automáticamente el centro de la herramienta con base en estas mediciones.
- Se deben de verificar los datos y añadir un peso en kg de la herramienta.

6. Verificación de la configuración:

- Una vez registrados los datos, es fundamental probar la herramienta ejecutando movimientos controlados.
- Observar que el extremo de la herramienta se mueva conforme a las coordenadas esperadas sin desviaciones.
- Si es necesario, realizar ajustes finos en la configuración para mejorar la precisión.
- Confirmar y guardar los valores obtenidos: Cuando la herramienta esté correctamente calibrada, se deben guardar los valores para su uso en futuras operaciones.

8. Pruebas finales:

- Ejecutar una serie de movimientos predefinidos para verificar la correcta configuración.
- Asegurarse de que la herramienta sigue las trayectorias planificadas sin errores de posicionamiento.

Conclusiones

Para comprobar que la herramienta está bien configurada, se realizan pruebas de precisión en las trayectorias y puntos programados. Si el punto de contacto de la herramienta coincide con los valores teóricos y no hay desviaciones en la ejecución de los movimientos, se puede confirmar que la configuración es correcta.

Es fundamental seguir el método **TCP XYZ 4 Puntos** con precisión para minimizar errores en la calibración. Además, el operador debe asegurarse de que la interfaz de usuario esté configurada adecuadamente y que los parámetros de velocidad y movimiento sean los adecuados para evitar posibles colisiones o imprecisiones en la trayectoria del robot.

Con una correcta configuración y verificación, el robot Kuka KR 16R2010-2 puede desempeñar tareas de manera eficiente y precisa, optimizando los procesos industriales en los que se utilice.

Referencias

- DIG Automation & Technology. (21-08-2023). *KUKA Tool Calibration, TCP Calibration* (*XYZ 4 Point*). YouTube. https://www.youtube.com/watch?v=G1NT-39wqqE&ab_channel=DIGAutomation%26Technology
- KUKA. (n.d.). *Manual de usuario KUKA*. https://www.kuka.com/-/media/kukadownloads/imported/8350ff3ca11642998dbdc81dcc2ed44c/0000262124_es.pdf